
4. V. E. Neuvazhaev, "Atomization of a turbulent mixing layer," ibid., No. 2 (1988). 
5. S. G. Zaitsev, E. V. Lazareva, V. V. Chernukha, and V. M. Belyaev, "Intensification of 

mixing at the boundary of media of different densities during the passage of a shock 
wave through it," Dokl. Akad. Nauk SSSR, 283, No. 1 (1985). 

6. V. E. Neuvazhaev and V. G. Yakovlev, "A theory of the turbulent mixing of an interface 
in a gravitational field," Prikl. Mekh. Tekh. Fiz., No. 4 (1976). 

7. V.E. Neuvazhaev, "A theory of turbulent mixing," Dokl. Akad. Nauk SSSR, 222, No. 5 (1975). 
8. N. N. Anuchina, Yu. A. Kucherenko, V. E. Neuvazhaev, et al., "Turbulent mixing on the 

accelerating boundary between fluids of different densities," Mekh. Zhidk. Gaza, No. 6 
(1978). 

9. K. I. Read, "Experimental investigation of turbulent mixing by Rayleigh-Taylor instabil- 
ity," Physica D, 12, 45 (1984). 

i0. V. E. Neuvazhaev and V. G. Yakovlev, "Mixing of a contact boundary slowed by stationary 
shock waves," Prikl. Mekh. Tekh. Fiz., No. 2 (1981). 

ii. L. Hovas, A Ramdani, and J. Fortes, "Creation and enhancement of turbulent mixing zones 
due to high Mach number shock interface interaction," International Workshop on the 
Physics of Turbulent Compressible Mixing. Oct., 1988: Proc. - Princeton, U.S.:: Springer 
(1988). 

TURBULENT FLOW AND HEAT TRANSFER OF A CHEMICALLY REACTING GAS MIXTURE 

IN A CHANNEL BEHIND AN ACCELERATING PISTON 

A. M. Bubenchikov and S. N. Kharlamov t~C 536.24 

This article examines the nonsteady turbulent motion of a recombining gas in a chamber 
behind an accelerating piston. The chamber is a section of a cylindrical tube bounded on the 
left by a stationary wall and on the right by the piston. The evacuated section of the chan- 
nel is located to the right of the piston. Before beginning motion, the partly dissociated 
gas - at a fairly high pressure - is uniformly distributed over the entire volume of the 
chamber, while the position of the piston is fixed. The piston is released at a certain 
moment of time taken as the initial moment and begins to accelerate toward the free end of 
the tube under the pressure of the hot gas. Expansion of the region occupied by the gas and 
the exchange of heat with the relatively cold wall of the channel lead to intensive recombi- 
nation in the flow. 

Our goal here is to construct a mathematical model of the given process and to study its 
gasdynamic features and criterional relations to determine parameters of the dynamic and 
thermal effects of the flow on the channel wall. 

To describe the gas flow in the present case, it is best to use the Reynolds equations 
in the "narrow channel" approximation [i]. Together with the energy equations for a two- 
component, chemically active mixture and the heat-conduction equation for the wall, these 
equations have the form 

0p a I 0 
o~ + ~ (P~) + 7 ~ (pvr) = O; ( 1 ) 

(Ou au au) ap t o /  ou , Op 
p - s  =--a- -7+-7~rp .z~-T) ,  ~ = 0 ;  (2) 

oh o~ dp [ ~  , 9 [  oh+ a~] 
+ "  + = + ko + - -  l ) A h  , p = ( t  + ( 3 )  

aT w t 0 I OTw~ 
d-F=o-F +u~ Pz=~+~t, az=a+qt, (4) 

where t is time; x and r are cylindrical coordinates; u and v are components of the velocity 
vector; p, h, and p are the density, enthalpy, and pressure; ~ and a are molecular viscosity 
and diffusivity; ~t and a t are the turbulence analogs of the transport coefficients; M and c 
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are the molecular weight and the mass concentration of the dissociated component; Ah is the 
thermal effect of the reaction; R is the universal gas constant; Le is the molecular Lewis 
number; Pw, Cw, and ~w are the density, heat capacity, and thermal conductivity of the ma- 
terial of the wall; T w is the temperature of the wall. All of the quantities in system (i)- 
(3) are averages (averaging of turbulent pulsations). Heat propagation in the channel wall is 
analyzed on the basis of the undimensional heat-conduction equatiofl (4). The solution of this 
equation gives a good approximation of the temperature field, due to the brevity of the gas- 
dynamic process. 

It is expedient to use the molecular theory of inhomogeneous gases to calculate the prop- 
erties of the medium. The only empirical aspect of this approach to finding the transport 
coefficients is determination of the forces of molecular interaction. The latter are needed 
to calculate the integral collisions. The behavior of interacting particles is described by 
the Lennard-Jones potential with numerical values of the "force constants" chosen in accor- 
dance with [2]. The collision integrals were approximated by means of the formulas in [3], 
while the viscosity coefficient of the two-component gas was calculated by the familiar 
relations in [4]. The thermal conductivity of the mixture was calculated using the formula 
obtained by Mason and Saxon [2] with allowance for the Aiken coefficient reflecting the poly- 
atomic nature of the gases. The coefficient of binary diffusion - which enters into the 
molecular Lewis number - was determined by means of a formula corresponding to the first ap- 
proximation in the Chapman-Enskog theory [5]. 

It was assumed that the chemical reactions were equilibrium reactions with respect to 
gasdynamic restructuring of the flow and the turbulent fluctuations. The concentrations of 
the components in the case of fast reactions were calculated using the equilibrium conditions 
7 

= 0 (~ is mass velocity in the formation of the dissociated component, with the superimposed 
bar denoting averaging of the pulsating quantities). By following [6] and thus making it 
possible to account for the effect of temperature pulsation on the rate of formation of the 
component, we can represent the equilibrium condition in the form 

T+=T+]/fi, (5) 
We will calculate the standard deviation of the temperature pulsations using an equation 

for autocorrelations of enthalpy fluctuations and the relation T '2 : h'2/ 2 Cpeff, which is valid 
for fast reactions. 

For the dissociation of diatomic gases we have [7] 

= [Kj(t --  c) + 2Kbpc2/M] (6 )  

(Kf and K b are the rate constants of the forward and reverse reactions). With allowance 
for (6), we write Eq. (5) as 

(i - -  c)( i  + s)/2 = c ~ [ i / ( K ~ T  +) + s / ( K : T - ) ]  p/(Mn), (7 )  

where  s = exp [E*/ (RT +) --  E* / (RT- ) ] ;  KZ = gn (T+);  g ;  = Kn ( T - ) ;  K .  = K]/Kb; E* i s  t h e  a c t i v a t i o n  
e n e r g y ;  R i s  t h e  g a s  c o n s t a n t  o f  t h e  m i x t u r e .  At  T '  = 0, Eq. (7 )  becomes  t h e  f a m i l i a r  Hu ld -  
b e r t - W a a g e  r e l a t i o n .  The e q u i l i b r i u m  c o n s t a n t  K n was c a l c u l a t e d  in  a c c o r d a n c e  w i t h  t h e  d a t a  
in [ 8 ] .  

We determined the coefficients characterizing the molar transfer of momentum and heat 
by using a differential turbulence model based on equations proposed in [9] for eddy kinetic 
energy, an equation proposed in [i0] for the turbulence scale, and equations for standard 
deviations of the fluctuations of the transverse component of velocity and enthalpy [ii]; 

(OE OE aE) l a [ OE] /au\2 E (8 )  
P . + u ~ + v ~  = V T r  r ( ~ + b ~ ) ~  + ~ , l ~  ) _b2(~+b~g~)--'L~, 

( :) P K[ 7 x 4 v - 5 7  = T N  r(~t+baPt)-O-Yr - -b4E '~ tkOr]  L + ( R- r )2  ' 

I w ~'~h E -  (Oh 'z Oh '---~ Oh"--2~ 1 O rP (a + bTat) Or J -t- bsp V h ~ - r -  b99a L'-~h .9\ ot +U-b-Z+V"~r}='7~ L 
(10) 

{ av '--r av'~ v av'--~2 ~ I a [ . , av "--~ l ~8/2 __  ~ ~ av a~ av '---~ ( 11 ) Pl, -+UTx + -v'2 - -b '2"7--2.~ a, Or" 

40 



Here, the values of the constants b i (i = i, 12) were chosen in accordance with the data in 
[9, i0] and as a result of optimization of the calculations in our analysis of the similarity 
distributions for the averaged turbulence characteristics. In this case, the coefficient ex- 
pressing the turbulent transfer of momentum ~t was determined from the relation [9, 12] 

+ o .o, (i2) 
Re,  = o 

where �9 is the fraction of energy of the turbulent moles responsible for exchange processes. 
We find this quantity as follows: 

= i--exp( - KK-~0~)'t 

Here, K is a constant determined on the basis of the agreement with the empirical data in 
[13]; t t = L//E is the time of the turbulent pulsations, calculated from local values of the 

0 turbulence characteristics; K 0 = D/s c is a parameter characterizing the transience of the 
process; s is the initial length of the chamber. 

We will represent the turbulent flow of heat in the form [ii] 

v'h'=bV~F~, b = c o . s t .  ( i 3 )  

Then in the case of the flow of a two-component medium and "extensive" equilibrium reactions 
~c 0c , 

(approximately with allowance for the assumption ~-fT'>>TpP we have 

( a Oc"-~c I lab 
. ,  = .bV  + ( 1 4 )  

C,-.- 5 [0c \2 Z ~ /  ~ 0c + Ah. 

It should be noted that the gradient representation for turbulent heat flow used in writing 
Eq. (3) is not essential in the solution of the thermal problem by means of Eq. (13). 

The above-described system of equations was integrated with initial distributions corre- 
sponding to the state of rest and with the following boundary conditions: symmetry on the flow 
axis; adhesion for the mean and fluctuation velocities; continuity for the temperature fields 
at the impermeable boundaries. The numerical solution of the problem is constructed on the 
basis of efficient implicit finite-difference schemes. The method used to construct the 
solution was described in detail in [14, 15]. We first tested the algorithm in trivial and 
self-similar cases of flow and heat transfer. Some of the results of tests of the solutions 
of Eqs. (i0) and (II) are shown in Figs. 1 and 2. 

The data shown in Fig. 1 corresponds to flow calculations performed with Re = 4.235.105 , 
Tu 0 = 5%, L 0 = 0.125D, where lines 1-4 are for x/D = !0, i00, 170, and 200 and the circles 
represent Laufer's measurements [16]. Figure 2 shows the distribution of dimensionless rms, 

_ fluctuations of enthalpy o h -Fh /(qw/(pu,)) in relation to the universal transverse coor- 
dinate y+ = pyu,/~. The circles show the results from [17], while lines 1 and 2 correspond 
to x/D = i0, 200 (Tu 0 = 5%, L 0 = 0.125D). It is evident from the graphs that there is good 
agreement between the theoretical profiles and the similarity distributions obtained in the 
experiments in [16, 17]. 

Calculations of gas flows behind an accelerating piston with the following values for 
the initial parameters: s = 0.3 m, R = 3.95.10 -3 m, R w = 8.10 -3 m, Pr = 0.674, T o = 5700 K, 
T~ = 300 K, ~ = 46 W/(m.K), y = 1.333, p0 = 2.10 s N/m 2, o = mi/m 2 = 0.918, m 2 = 10 -3 kg, 
Tu ~ = 10 -4 , L ~ = 0.01.R. Here, R c and R are the external and internal radii of the channel; 
a is the ratio of the mass of the gas to the mass of the piston; ~ is the adiabatic exponent; 
Tu is turbulence intensity; a zero superscript denotes the initial moment of time. We used 
hydrogen as the heat carrier. Figure 3 shows distributions of the intergral characteristics 
of the flow: the pressure on the left boundary of the piston P2 and the velocity of the piston 
u 2 (curves 1 and 2) in relation to its position as characterized by the coordinate x 2 = x2(t). 
The solid lines are for the recombining gas, while the dashed lines are for the "frozen" 
flow. It is evident that chemical changes can have a significant effect on the gasdynamic 
pattern of the flow. Thus, the recombining gas has a high pressure and creates conditions 
which tend to increase piston velocity. Velocity increases 21% on the section s = 0.7 m due 
to the conversion of chemical energy into thermal energy. The increase in pressure on the 
piston by the final moment of the process is 250%. 
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Some of the results of calculation of the mean turbulence characteristics are shown in 
Fig. 4, where a are the rms fluctuations of the transverse component of velocity v~/u, for 

the moment of time t/t 0 = 3. Curves 1-6 correspond to v~T~/u, = I0, 2, i, 0.6, 0.25, 0.05; 

Fig. 4b shows rms fluctuations of enthalpy h~/h, for the moment of time t/t 0 = 3. Lines 1-7 

correspond to h~/h, = 8.5, 4, 3, 2, i, 0.2, 0.048. It is evident (Fig. 4a) that the regions 

ofhigh values of V~/u, are concentrated in the area behind the piston and near the lateral 
surface of the channel. The main factor in the mechanism responsible for the generation of 
turbulence near the walls is the presence of large gradients of mean velocity in these re- 
gions. Due to the brevity of the process, the contribution of diffusion to the transfer of 
momentum from the walls to the flow core is limited, while the generation of turbulence with- 
in this region is impeded by high values of gas-particle acceleration and the oh- 
sence of shear in the axial part of the channel. The results of our calculations show that 

the maximum of the quantity v~/u, (in the zone where the intensity of the turbulentpulsa- 
tions increases) in the channel section g/S0 = 0.5 for the moment of time t/t 0 = 3 is approx- 
imately 3.5 times greater than the corresponding values with stationary motion of the gas on 
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the flow-stabilizing section. The zero subscripts here and below indicate characteristic 
values of the parameters (to = s ~ is the time of the process and ~0 is the total mass 
of the gas). The character of distribution of the rate of fluctuation of enthalpy a h = 

V~F~Th, (Fig. 4b) is relatively complex by comparison, which can be attributed to the in- 
teraction of the thermal and hydrodynamic fields. However, as for velocity, the regions 
characterized by a high enthalpy fluctuation rate are localized near the piston and the 
lateral surface of the channel. 

The lines in Figs. 5 and 6 show results of calculations of the parameters that charac- 
terize the thermal and dynamic effects of a chemically reactive flow on the channel wall in 
accordance with the above-described model. Figure 5 shows the dependence of heat flux qw 
on the dimensionless parameter t/t 0 on the channel section x = -0.05 m. We note that the 
motion of the piston begins from the position x = 0 at t = 0. Here and in Fig. 6, points I 
show results calculated with Eqs. (15)-(18), while Fig. 2 shows the same relations with 
Cpeff/Cp = i. It is evident that the distribution of qw in the chemically reacting flow 
dlffers-appreciably from the motion of an inert medium [15] in regard to the presence of character- 
istic "steps." The existence of the steps is due to an intensification of wave effects in 
the reacting flow as a result both of a decrease in sonic velocity and the possibility of the 
conversion of thermal energy into chemical as well as mechanical energy. 

Despite its conservative nature, the friction coefficient in our test (Fig. 6} turned out 
to be more sensitive to chemical transformations. However, satisfactory agreement can be ob- 
tained between the results calculated from the above-described model and found with the cri- 
terional relations for the Nusselt number and the friction coefficient. To do this, expres- 
sions which are valid for the flow of an inert medium [15] are supplemented by the complexes 
which contain ~peff/Cp. Here, 5peff is taken as the effective heat capacity averaged over 

~ C :~::~ ~::~~ w ~ g l :  r ~h~ o ~r:~:: x~::~ i ::~a~:~Yt~ ~:eg:~ mixture'the flow of Thea 

dissociating medium behind an accelerating piston 

2 / ~  \--0,35 
= 0,t3  Ro ( ; ( 1 5 )  

\T w ] \ Cp ] 

[ ~p er,| ; ( 1 6 )  Nu ~ 0,0162Re~176 ~-~] \ Cp ] 

Re = Dpu/~(T), Pr = cpvt (~)/~(T), O = T + rw~/(2Cp), r~ = ~/-Fr; ( 1 7 )  

z~ = (~/8)p~ =, q~ = Nu(@ --  T~) % ~ ) / D .  ( 1 8 )  

Here, ~ is the friction coefficient; Nu and Pr are the Nusselt and Prandtl numbers;O is the 
flow stagnation temperature; r w is the coefficient of restriction; p and T are the density 
of the gas averaged over the cross section and the mean-mass temperature of the flow; T w is 
the temperature of the internal surface of the channel. 

Thus, Eqs. (15)-(18) can be used to calculate friction and heat transfer both for a flow 
of inert gases and a flow of chemically reactive gases behind an accelerating piston in a 
channel. 
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CASCADE PROCESSES AND FRACTALS IN TURBULENCE 

A. G. Bershadskii UDC 532.517.4 

The idea of homogeneity is now giving way to the less restrictive idea of fractal self- 
similarity (see, for example, [i-4]). Cascade models, which have been used successfully for 
studying homogeneous turbulence, could also be useful for studying fractal turbulence. On 
the other hand, these cascade modelscan be improved by taking into account the fractal struc- 
ture of real turbulence. A great deal of experimental material has now been accumulated. 
This material needs to be organized and interpreted. In the present paper we examine some 
aspects of cascade processes taking into account the fractal structure of turbulence. First, 
we establish a relation between the form of the energy spectral density in the scaling inter- 
val and the fractal dimension of the surface of the hydrodynamic fields. This relation is 
important, in particular, for atmospheric turbulence and is confirmed by direct observations 
of atmospheric hydrodynamic fields, performed by different authors. An analogous investiga- 
tion was also performed for two-dimensional turbulence, the computational results for which 
are confirmed by comparing with oceanographic computational data. Second, a relation between 
the constant in the Kolmogorov-Obukhov spectral law and the intermittency coefficient is 
established by taking into account the fractal structure. 

Suppose that when turbulence arises it has a patchy character, i.e., the nonturbulent 
region contains separate subregions occupied with turbulent fluid [5] (criteria for dis- 
tinguishing between the subregions are given, for example, in [6]). Since the fluid par- 
ticles in the turbulent liquid strive to move away from each other [7, 8], one would expect 
that in time these regions will expand on the average. Moreover, this property of fluid 
particles in a turbulent liquid should, in general, cause the turbulent part of the liquid 
to strive constantly to increase the total area of the boundary separating it from the non- 
turbulent fluid. Is this process unbounded or can it saturate? If a self-similar situation 
is established, then the total area of the surface separating the turbulent liquid from the 
nonturbulent liquid will approach infinity, and this surface will become a fractal with frac- 
tal dimension D a > 2 (in three-dimensional space). 

We introduce the probability density p(s for encountering a turbulent subregion with 
characteristic size s By definition of the probability density the total area separating 
the turbulent and nonturbulent regions in the interval of self-similarity is given by 
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